Serie 2022

Qualifikationsverfahren

Zeichner/In EFZ

Fachrichtung Architektur

Pos. 1 Mathematische und naturwissenschaftliche Grundlagen

Schriftliche Prüfung Serie A

Aufgabe 2 INKI. Troppe

Vorlage für Experten und Expertinnen

Zeit Zum Lösen der 5 Aufgaben stehen Ihnen 60 Minuten zur Verfügung.

Hilfsmittel Formel- und Tabellenbücher ohne Berechnungsbeispiele sind gestattet, ebenso

netzunabhängige, nicht druckende elektronische Taschenrechner.

Die Hilfsmittel dürfen nicht ausgetauscht werden. Geodreiecke sind gestattet.

Lösungsweg Der Lösungsweg ist lückenlos – wo nötig mit Handskizzen – darzustellen.

Resultate ohne Lösungsweg zählen 0 Punkte.

Genauigkeit Zwischenresultate sind genauer als das Endresultat zu berechnen (erst am Schluss

runden).

Notenskala Maximale Punktezahl: 50

 47.5 - 50.0
 Punkte = Note 6.0

 42.5 - 47.0
 Punkte = Note 5.5

 37.5 - 42.0
 Punkte = Note 5.0

 32.5 - 37.0
 Punkte = Note 4.5

27.5 - 32.0 Punkte = Note 4.0 22.5 - 27.0 Punkte = Note 3.5

17.5 - 22.0 Punkte = Note 3.0 12.5 - 17.0 Punkte = Note 2.5

7.5 - 12.0 Punkte = Note 2.0 2.5 - 7.0 Punkte = Note 1.5

0.0 - 2.0 Punkte = Note 1.0

Bitte beachten Sie:

Genauigkeit: Die Resultate können geringfügig von den Lösungsvorschlägen abweichen, wenn die

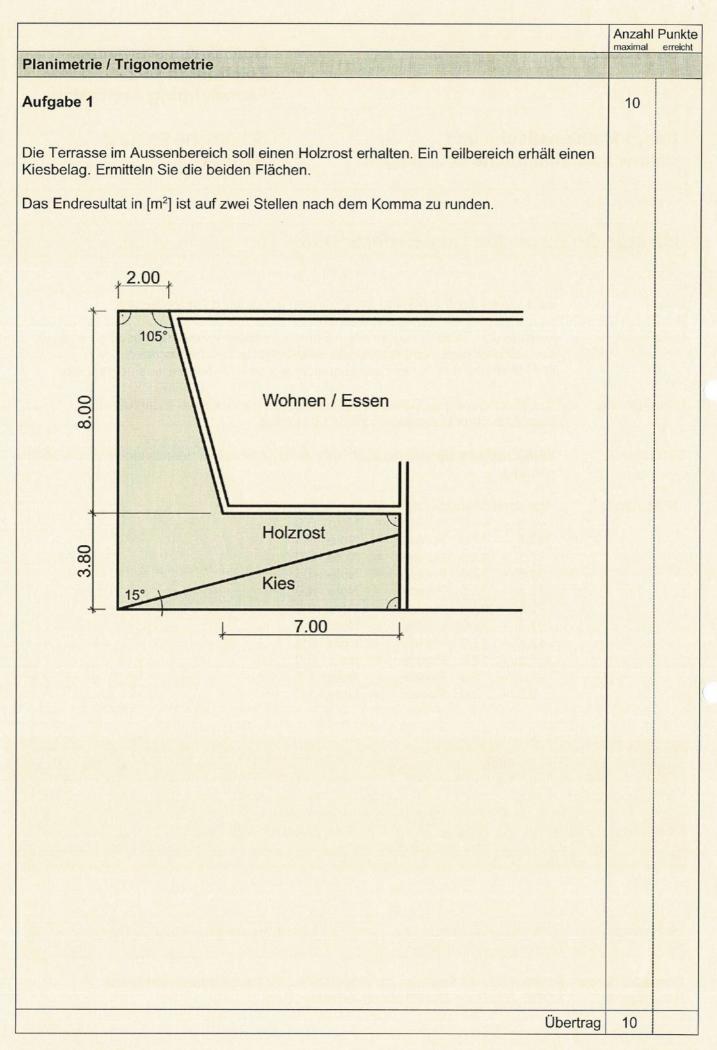
Aufgaben mit gespeicherten, resp. gerundeten Zwischenresultaten gelöst werden.

Lösungsweg: Es ist möglich, dass auch andere Lösungswege als die Vorgeschlagenen zum Ziel

führen. Die Punkte sind entsprechend zuzuordnen.

Bewertung: Für jede vollständig gelöste Aufgabe werden 10 Punkte erteilt.

Mögliche richtige Lösungswege müssen auch bei falschem Zwischen- oder Endresultat


bewertet werden.

Sperrfrist: Diese Prüfungsaufgaben dürfen nicht vor dem 1. September 2023 zu Übungs-

zwecken verwendet werden.

Erarbeitet durch: Fachausschuss Rechnen Zeichner/Innen EFZ Fachrichtung Architektur

Herausgeber: SDBB, Abteilung Qualifikationsverfahren, Bern

	maximal	Punkte
Übertrag	0	
Lösung 1		
Es sind mehrere Lösungswege möglich:		
1 2.00 		
Wohnen / Essen		
A Holzrost D S Kies C		
b 7.00		
a = 8.00 x tan 15° = 2.144	1	
b = 2.00 + a = 4.144	1	
$c = (7.00 + b) \times \tan 15^\circ = 2.986$	1	
d = 3.80 - c = 0.814	1	
Fläche Holzrost = A + B		
A = 8.00 x (2.00 + a/2) = 24.576	1	
$B = (7.00 + b) \times (3.80 + d) / 2 = 25.709$	1	
$A + B = 50.29 m^2$	2	
Fläche Kies = C		
$C = (7.00 + b) \times c/2 = 16.64 m^2$	2	
Übertrag	10	

		Anzahl maximal	Punkt
Stereometrie (Volumen Gebäude)			
	Übertrag	10	
Aufgabe 2		10	
Berechnen Sie das effektive Gebäudevolumen Lichtschächte. Das Endresultat in [m³] ist auf zwei Stellen nach			
Erdgeschoss	Obergeschoss		
15.10	3.80 12.20		
3.50 6.00	S 11.80		
Untergeschoss	Schnitt		
16.00	50, 2.50 30, 4.00		
	Übertrag	20	

		Anzahl Pu maximal err	nkte eicht
	Übertrag	10	
Lösung Aufgabe 2			
UG			
16.00 m x 5.20 m = 83.20 m ² x (0.50 + 2.50 + 0.30) m	$=$ 274.56 m^3	In part	
10.00 m x 6.60 m = 66.00 m ² x (3.30) m	= 217.800 m ³		
5.17 m x 1.45 m = 7.497 m ² x (3.30) m	$=$ 24.738 m^3		
	517.098 m ³	3	
EG			
5.20 m x 6.00 m = 31.20 m ² x 2.80 m	$=$ 87.36 m^3		
(15.10 m – 6.00 m) = 9.10 m			
[(7.50 m + 9.10 m): 2] x 8.70 m = 72.21 m ² x 2.80 m	$=$ 202.188 m^3		
	289.548 m³	3	
OG			
Terrassen-Boden OG = 11.80 m x 3.80 m x 0.30 m	$=$ 13.452 m^3		
11.80 m x 12.20 m = 143.96 m ² x (0.30 + 2.60 + 0.40) m	$=$ 475.068 m^3		
	488.520 m³	3	
Gesamtvolumen Gebäude = UG + EG + OG	= _1'295.166 m ³ _		
	1'295.17 m³	1	
	Übertrag	20	

Böschungsgefälle in [%] um. Berechnen Sie die Höhenkote bei Punkt B und weisen Sie diese in [m ü. M.] aus. +/- 0.00 = 518.20 m ü. M. Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains – 1.17 m beträgt. Die Endresultate sind auf zwei Stellen nach dem Komma zu runden. Schnitt Schnitt Gewachsenes Terrain Gefälle 5.5% 10.03 (Abbildung nicht massstabgetreu)			Anzahl	Punkte
Aufgabe 3 a) Berechnen Sie das Böschungsverhältnis 1:3 zwischen Punkt A und Punkt B in das Böschungsgefälle in [%] um. 2) Berechnen Sie die Höhenkote bei Punkt B und weisen Sie diese in [m ü. M.] aus. + / - 0.00 = 518.20 m ü. M. 4) Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains – 1.17 m beträgt. 5) Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains – 1.17 m beträgt. 5) Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains – 1.17 m beträgt. 5) Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains – 1.17 m beträgt. 6) Gewachsenen Terrain Gefälle 5.0% – 1.17 – 1.80 – 1.8	Prozei	ntrechnungen		
Berechnen Sie das Böschungsverhältnis 1:3 zwischen Punkt A und Punkt B in das Böschungsgefälle in [%] um. Berechnen Sie die Höhenkote bei Punkt B und weisen Sie diese in [m ü. M.] aus. +/-0.00 = 518.20 m ü. M. Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains = 1.17 m beträgt. Die Endresultate sind auf zwei Stellen nach dem Komma zu runden. Schnitt Schnitt (Abbildung nicht massstabgetreu)		Übertrag	20	
Böschungsgefälle in [%] um. 2 3) Berechnen Sie die Höhenkote bei Punkt B und weisen Sie diese in [m ü. M.] aus. +/-0.00 = 518.20 m ü. M. 4 4 4 5) Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains – 1.17 m beträgt. Die Endresultate sind auf zwei Stellen nach dem Komma zu runden. Schnitt Gewachsenes Terrain Gefälle 5.5% 10.03 (Abbildung nicht massstabgetreu)	Aufga	be 3	10	
# / - 0.00 = 518.20 m ü. M. Berechnen Sie das Mass X der Rampe in [m], wenn bei Punkt C die Höhe des gewachsenen Terrains – 1.17 m beträgt. Je Endresultate sind auf zwei Stellen nach dem Komma zu runden. Schnitt Gewachsenes Terrain Gefälle 5.0% – 10.117 6.20 X (Rampe) (Abbildung nicht massstabgetreu)			2	
gewachsenen Terrains – 1.17 m beträgt. Die Endresultate sind auf zwei Stellen nach dem Komma zu runden. Schnitt Gewachsenes Terrain Gefälle 5.5% Gewachsenes Terrain Gefälle 5.0% (Abbildung nicht massstabgetreu)	b) Be	erechnen Sie die Höhenkote bei Punkt B und weisen Sie diese in [m ü. M.] aus. /- 0.00 = 518.20 m ü. M.	4	
Schnitt Vorplatz und Rampe Gefalle 5.5% 0,03 Gewechsenes Terrain Gefalle 5.0% C-1.17 6.20			4	
Gewachsenes Terrain Gefälle 5.0% C-1.17 6.20 X (Rampe) 1.80 (Abbildung nicht massstabgetreu)	Die En	dresultate sind auf zwei Stellen nach dem Komma zu runden.		
		Gewachsenes Terrain Gefälle 5.5% Gewachsenes Terrain Gefälle 5.0% C-1.17 6.20 X (Rampe) 1.80		
I II - I - I - AA I		Übertrag	30	

	Anzahl maximal	Punkte
Übertrag	20	
Lösung Aufgabe 3		
Grenze		
Gewachsenes Terrain Gefälle 5.5% -0.03 C -1.17 C -1.17		
6.20 X (Rampe) 1.80 Z		
(Abbildung nicht massstabgetreu)		
a) Böschungsgefälle zwischen Punkt A und Punkt B in [%]:		
$1:3 = \frac{100 \%}{3} = 33.3333 \approx 33.33\%$	2	
b) Höhenkote bei Punkt B (+/- 0.00 = 518.20 m ü. M.)		
$\frac{1.80 \text{ m}}{3} = 0.60 \text{ m}$		
- 0.03 m + (- 0.85 m) + (- 0.60 m) = - 1.48 m	1	
518.20 m ü. M. – 1.48 m = 516.72 m ü. M.	1 2	
c) Mass x		
Y = -0.03 m - (-1.17 m) = 1.14 m	1	
Y (Höhe) x 100 Z (Länge gesucht) = p (5.5 % + 5.0 %)	1	
7 - 1.14 m x 100 - 10.957 m 40.96 m	1	
$Z = \frac{10.857 \text{ m}}{10.5 \%} = 10.857 \text{ m} \approx 70.86 \text{ m}$ $X = Z - 6.20 \text{ m}$	1	
X = 10.86 m - 6.20 m = <u>4.66 m</u>	1	
Übertrag	30	

					Anzahl maximal	Punk
(0	stenbereich, Anlageko	osten				
5000				Übertrag	30	
u	fgabe 4					
)	Eine Immobiliengesell pro Monat beträgt CHI	schaft baut ein Einfamil F 3'550.—.	lienhaus zur Vermietu	ing. Der Mietzins		
	Anlagekosten					
	Gebäude		CHF	585'000.—		
	Umgebung		CHF	61'600.—		
	Baunebenkosten		CHF	8'000.—		
	Bauland 560 m ² à		CHF	470.—/m²		
		lagekosten in [CHF] und uss auf 2 Stellen nach		[%]. Runden Sie	5	
)	Eine frühere Kostenso folgendermassen aufg	hätzung ergab Gesamt jeteilt wurden:	kosten von CHF 955	000.—, welche		
	Kapitalkosten					
	Hypothek (Bank)	50 %	Zinssatz	1.2 %		
	Darlehen	CHF 140'000	Zinssatz	1.385 %		
	Eigenkapital		Zinssatz	4.0 %		
	Berechnen Sie die Ka	pitalkosten in [CHF] pro	o Jahr. Das Endresulta	at ist auf 5 Rappen		
	genau anzugeben.				5	
						15
				Übertrag	40	

		Anzah	I Punkt
	Übertr		- CITCION
_Ö\$	sung Aufgabe 4		
a)	Anlagekosten		
	Gebäude CHF 585'000.—		
	Umgebung CHF 61'600.—		
	Baunebenkosten CHF 8'000.—		
	Bauland 560 m ² 560 m ² x 470.— / m ² CHF 263'200.—	1	
	Anlagekosten CHF 917'800.—	1	
	Bruttorendite		
	Mietzins x 12 x 100 (CHF 3'550.00 x 12 x 100)		
	Anlagekosten CHF 917'000.00	1	
	(CHF 42'600.00 x 100)		
	CHF 917'000.00 * 4.64 %	2	
,	Kanitalkastan		
)	Kapitalkosten Hypothek (50 %)		
	CHE 955'000 00 x 50		
	100 = CHF 477'500.—		
	Zinssatz (1.2 %)		
	CHE 477'500 00 x 1 2		
	100 = CHF 5'730.—	1	
	Zinssatz (1.385 %)		
	CHF 140'000.00 x 1.385 = CHF 1'939.—		
	100	1	
	Zinssatz (4.0 %) Eigenkapital		
	CHF 337'500.00 x 4 = CHF 13'500.— CHF 477'500.00	1	
	100 - CHF 140'000.00 - CHF 337'500.00		
	Kapitalkosten CHF 5'730.—		
	+ CHF 1'939.—		
	+ CHF 13'500.— = CHF 21.169.— p.a		
	7.1. 2.1.100. p.a	2	
	Übertra	ag 40	

						Anzahl maximal	Punkte
W	ärmel	ehre (U-Wert)					
					Übertrag	40	
		e 5 r Terrain ist die Aussenw ebaut. Ergänzen Sie die					
	Auss	senwand. Endresultat ist in [^w / _{m2к}] а					
	Nr.	Schichtfolge	Dicke [m]	Wärmeleitzahl [^W / _{mK}]	Widerstand [m2K/w]		
		Wärmeübergang innen			0.125		
	1	Innenputz für normale Berechnungen	0.010	0.760			
	2	Backstein	0.200	0.440			
	3	Klebemörtel	0.004	0.900			
	4	Swisspor PIR	0.200		8.696		
	5	Aussenputz mit Bewehrungsgewebe	0.008	0.900		3	
		Wärmeübergang aussen	- Alexandria		0.040		
				R _{Total} [^{m2K} / _W]		1	
				U-Wert [^W / _{m2K}]		1	
y.							
b)		Bauherr möchte mit eine					
		gleichen U-Wert erreiche senwandkonstruktion die		riele Zentimeter wird die		5	
	Das	Endresultat ist in [cm] au	uf zwei Stelle	en nach dem Komma zu	u runden.		
					Übertrag	50	

					Übertrag	Anzahl maximal 50	errei
					Sporting		
sung	g Aufgabe 5						
Übe	er Terrain ist die Aussenv	vandkonstruk	tion als verputzte	e Auss	enwanddämmung		
	gebaut. Ergänzen Sie die senwand.	Tabelle und	berechnen Sie o	len U-\	Wert dieser		
	Endresultat ist in [W/m2k]	auf zwei Stel	llen nach dem Ko	nmma	zu runden		
		1			20.0000		
Nr.	Schichtfolge	Dicke [m]	Wärmeleitzahl	[W/ _{mK}]	Widerstand [m2K/w]		
	Wärmeübergang innen				0.125		
1	Innenputz für normale Berechnungen	0.010		0.760	0.013		
2	Backstein	0.200		0.440	0.455		
3	Klebemörtel	0.004		0.900	0.004		
4	Swisspor PIR	0.200		0.023	8.696		
5	Aussenputz mit Bewehrungsgewebe	0.008		0.900	0.009	3	
	Wärmeübergang aussen				0.040		
		the property					
			R _{Total} [^{m2k}	Yw]	9.342	1	
			R _{Total} [^{m2}		0.11	1	
den Aus	Bauherr möchte mit eine gleichen U-Wert erreich senwandkonstruktion die Endresultat ist in [cm] a	en. Um wie v ker? uf zwei Stelle	U-Wert [\ nellen Dämmung riele Zentimeter v en nach dem Kor	M/ _{m2K}] (EPS r vird die	mit $\lambda = 0.032 \text{ W/mK}$)	1	
den Aus	gleichen U-Wert erreich senwandkonstruktion die	en. Um wie v ker? uf zwei Stelle	U-Wert [\ nellen Dämmung riele Zentimeter v	M/ _{m2K}] (EPS r vird die	0.11 mit $\lambda = 0.032 \text{ W/mK}$	1	
den Aus Das Nr.	gleichen U-Wert erreich senwandkonstruktion die Endresultat ist in [cm] a	en. Um wie v ker? uf zwei Stelle	U-Wert [\ nellen Dämmung riele Zentimeter v en nach dem Kor	M/ _{m2K}] (EPS r vird die	mit $\lambda = 0.032 \text{ W/mK}$)	1	
den Aus Das Nr.	gleichen U-Wert erreichesenwandkonstruktion die Endresultat ist in [cm] a	en. Um wie v ker? uf zwei Stelle	U-Wert [\begin{align*}	M/ _{m2K}] (EPS r vird die	0.11 mit $\lambda = 0.032 \text{ W/mK}$) a runden. rstand [m2K/w] (soll)	1	
den Aus Das Nr. 4	gleichen U-Wert erreichesenwandkonstruktion die Endresultat ist in [cm] a Dicke [m]	en. Um wie v ker? uf zwei Stelle	U-Wert [\begin{align*}	M/ _{m2K}] (EPS r vird die	0.11 mit $\lambda = 0.032 \text{ W/mK}$) a runden. rstand [m2K/w] (soll)	1	
den Aus Das Nr. 4 = 0.	gleichen U-Wert erreichesenwandkonstruktion die Endresultat ist in [cm] a Dicke [m] x .032 W/mK × 8.696 m2K/W	en. Um wie v ker? uf zwei Stelle	U-Wert [\begin{align*}	M/ _{m2K}] (EPS r vird die	0.11 mit $\lambda = 0.032 \text{ W/mK}$) a runden. rstand [m2K/w] (soll)	1 1	
den Aus Das Nr. 4 = 0.	gleichen U-Wert erreichesenwandkonstruktion die Endresultat ist in [cm] a Dicke [m] x .032 W/mK × 8.696 m2K/w .278 m 0.278 m 0.200 m	en. Um wie v ker? uf zwei Stelle	U-Wert [\begin{align*}	M/ _{m2K}] (EPS r vird die	0.11 mit $\lambda = 0.032 \text{ W/mK}$) a runden. rstand [m2K/w] (soll)	1 1 1	
den Aus Das Nr. 4 := 0.	gleichen U-Wert erreichesenwandkonstruktion die Endresultat ist in [cm] a Dicke [m] x .032 W/mK × 8.696 m2K/W .278 m 0.278 m	en. Um wie v ker? uf zwei Stelle	U-Wert [\begin{align*}	M/ _{m2K}] (EPS r vird die	0.11 mit $\lambda = 0.032 \text{ W/mK}$) a runden. rstand [m2K/w] (soll)	1 1	